
Last updated by | Fly, David C | Feb 20, 2025 at 3:08 PM CST
L5 Connect API Introduction

Contents
• Goal
• Introduction
• Design Philosophy
• Extended Filtering
• String Search Capability
• Sample Use Cases

• Issued Tool Monitoring using Event Logs
• Getting Eventlogs for a Specific Device
• Getting a Current List of Issued Tools
• Getting Issued Tools with Cross Referenced Employees

• Create Cross-Reference Table
• Normal Operation

• Managing Tool Maintenances
• Try it out
• Conclusion

Goal

Introduction

Design Philosophy

Initial Document Date 10/24/2023
Software Release 9.8.2.x

The purpose of this document is to explain the basic layout of the L5 Connect™ API and how it can be used to
get information required to integrate the L5 Connect system with a customer designed interface.

The L5 Connect™ system is built on top of a carefully designed relational database to provide data integrity,
flexibility, and extendibility. The API reflects this design in the layout of the objects it provides for reading and
updating. This document will help to explain the design philosophy behind the layout of the API and the typical
use case for how customers manage data through the API.

There is a lot of data available for a user to retrieve and manage through the API. The objects available in the L5
API have attributes, which are the data directly related to that object, and relationships, which point to another
type of object related to the first object. The ID provided in that relationship can be used to pull the related
object and get its detailed attributes. Using this design allows the user to only pull the extra data from

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=goal
https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=introduction
https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=design-philosophy

The response he would look something like this.

relationships as needed and helps to reduce the total data transferred. For example, if a user requested an
issued tool with the tool ID of 100004 from the API, the command would look like this.

GET /IssuedTools/100004 

{

 "data": {

 "type": "issuedtools",

 "id": "100004",

 "attributes": {},

 "relationships": {

 "instances": {

 "data": [

 {

 "type": "issuedtoolInstance",

 "id": "100004",

 "attributes": {

 "issuetime": "2021-10-21T21:23:05.803",

 "intransit": false,

 "quantity": 1

 },

 "relationships": {

 "tool": {

 "data": {

 "type": "tools",

 "id": 100004

 }

 },

 "issuebehavior": {

 "data": {

 "type": "issuebehaviors",

 "id": 0

 }

 },

 "employee": {

 "data": {

 "type": "employees",

 "id": 5

 }

 },



 "location": {

 "data": {

 "type": "locations",

 "id": 35

 }

 }

 }

 }

]

 }

 }

 }

}

This contains the attributes specific to an issued tool such as the time it was issued and the quantity issued. It
also contains relationships to related objects in the system such as the type of tool that was issued and the
person to whom it was issued.

If more information about the issuing user is required, a call can be made to the employees controller get by ID
method using the ID provided in the relationship, which is 5 in this case. Here is what that request would look
like.

GET /Employees/5 

Here is an example of that response from the API.

{

 "data": {

 "type": "employees",

 "id": "5",

 "attributes": {

 "displayname": "Mechanic, Mike ",

 "imageupdated": "2022-05-16T20:13:09",

 "deactivated": false,

 "lastname": " Mechanic ",

 "firstname": "Mike",

 "middleinitial": "",

 "title": "",

 "username": "mjm",

 "badge": "9BACC9"

 },

 "relationships": {

 "homelocation": {

 "data": {

 "type": "locations",

 "id": 1

 }

 },

 "groups": {

 "data": [

 {

 "type": "groups",

 "id": 2

 }

]

 },

 "profiles": {

 "data": [

 {

 "type": "locations",

 "id": 1,



Extended Filtering

String Search Capability

 "relationships": {

 "profile": {

 "data": {

 "type": "profiles",

 "id": 1

 }

 }

 }

 }

]

 }

 }

 }

}

This provides the attributes of the issuing employee such as his display name and user ID and more. The same
approach can be used to get the tool specific information such as part number, description and other tool
related fields.

Sometimes you might wish to filter by a field in a relationship to an object. To make certain cases like this more
convenient, extended filtering has been added in select places. For instance, if you wanted to get all the
eventlogs for an employee with a specific email, you could look at the eventlogs controller get and see that it
supports extended filtering for the employee relationship. You could then look at the documentation of the
employee controller and see that it supports extended filtering on the email parameter. You could then send the
following request to get all the eventlogs for an employee with the specified email as an example. Notice how
the relationship and the parameter desired are combined with a dash to create the parameter key to be
requested.

GET /EventLogs?employee-email=johndoe@gmail.com 

This would return a list of the eventlogs that are for the employee with an email of johndoe@gmail.com.

The documentation of the individual controllers in the API will define any extended filtering relationships
including string search capabilities. They will also define any fields within that controller which can be used for
extended filtering.

String search capability has been added to certain parameters in the API to allow SQL LIKE string pattern
matching type searches. For example, there is a description_search filter on the master tools get method that

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=extended-filtering
https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=string-search-capability
mailto:johndoe@gmail.com

The percent sign % represents zero, one, or multiple characters
The underscore sign _ represents one, single character

Sample Use Cases

Issued Tool Monitoring using Event Logs

allows you to search for master tools with a tool description that contains a defined string pattern. There are
two types of wild cards that can be used to help build the string pattern you want to match.

So, if you wanted to search for tools where the description contained the word wrench it would look like this.

GET /MasterTools?description_search=%wrench% 

The % characters mean that any combination of characters in front of the string wrench and any combination of
characters after the string wrench will be considered a match.

The documentation of the individual controllers in the API will define any string search capabilities.

This section will describe the typical use case for monitoring issued tools through the API of the L5 Connect™
system. This is how most of our customers have set up their interfaces. In the L5 Connect™ system, eventlogs
provide a record of everything that occurs in the system. There are many kinds of events recorded in the
system. Each eventlog has an action relationship which contains a logactions ID. This ID represents a type of
event that can occur in the L5 Connect™ system. To get a list of the logactions that are recorded in the system
you can use the GET method on the LogActions controller. The request would look like this.

GET /LogActions 

And here is a partial example of the response.

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=sample-use-cases
https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=issued-tool-monitoring-using-event-logs

{
 "data": [
 {
 "type": "logactions",
 "id": "0",
 "attributes": {
 "en": "LOG ERROR",
 "it": "LOG ERRORE",
 "fr": "LOG ERREUR",
 "es": "ERROR LOG",
 "de": "ERROR LOG",
 "pt": "Log de erro",
 "zh": "日志错误",
 "ko": "로그 오류",
 "ja": "ログエラー"
 }
 },

 {
 "type": "logactions",
 "id": "6144",
 "attributes": {
 "en": "Tool Issued",
 "it": "prelevato strumento",
 "fr": "Outil Publié",
 "es": "Herramienta Emitido",
 "de": "Werkzeugausgabe",
 "pt": "Ferramenta Emitido",
 "zh": "工具借出",
 "ko": "공구 발급됨",
 "ja": "ツールの取り出し"
 }
 },
 {
 "type": "logactions",
 "id": "6145",
 "attributes": {
 "en": "Tool Returned",
 "it": "Strumento restituito",
 "fr": "Outil de retour de",
 "es": "Herramienta Obtenidos",
 "de": "Werkzeug Returned",
 "pt": "Ferramenta para Devolução",
 "zh": "工具归还",
 "ko": "공구 반환됨",
 "ja": "ツールの返却"
 },

 {
 "type": "logactions",
 "id": "2051",
 "attributes": {
 "en": "Drawer Closed",
 "it": "Cassetto Chiuso",
 "fr": "Tiroir fermé",
 "es": "Cajón Cerrado",
 "de": "Schublade geschlossen",
 "pt": "Gaveta Fechado",
 "zh": "抽屉关闭",
 "ko": "서랍 닫힘",
 "ja": "引き出しが閉じた状態"
 }
 }
],
 "links": {
 "first": "https://l5connectapi.com:59011/api/LogActions?offset=0&limit=50",



 "next": "https://l5connectapi.com:59011/api/LogActions?offset=50&limit=50",
 "last": "https://l5connectapi.com:59011/api/LogActions?offset=600&limit=50"
 },
 "meta": {
 "offset": 0,
 "limit": 50,
 "count": 620
 }
}
Response headers
 content-length: 22996
 content-type: application/json; charset=utf-8
Responses

For this example, we will be interested in the actions for each time a tool is issued or returned. You can see from
the logactions sample that those logaction IDs are 6144 and 6145. Using the Eventlogs controller of the API,
you can poll the API to get the latest group of eventlogs filtered for the action type of concern. In this case that
would be the tool issued, and tool returned events. You could also filter by a specific location or device to limit
your results further. See the Getting Eventlogs for a Specific Device section for more information.

Here is what that request might look like.

GET /Eventlogs?limit=2&actions=6144%2C%206145&startid=1&endid=500000 

Here is an example of what the response might look like.

{

 "data": [

 {

 "type": "eventlogs",

 "id": "18596",

 "attributes": {

 "eventtime": "2020-09-28T19:17:22.577",

 "quantity": 2,

 "data": "2"

 },

 "relationships": {

 "action": {

 "data": {

 "type": "logactions",

 "id": 6144

 }

 },

 "tool": {

 "data": {

 "type": "tools",

 "id": 100014

 }

 },

 "locationsource": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "locationdest": {

 "data": {

 "type": "locations",

 "id": 35

 }

 },



 "parentsourcelocation": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "parentdest": {

 "data": {

 "type": "locations",

 "id": 21

 }

 },

 "employee": {

 "data": {

 "type": "employees",

 "id": 4

 }

 },

 "affectedemployee": {

 "data": {

 "type": "employees",

 "id": 4

 }

 },

 "device": {

 "data": {

 "type": "devices",

 "id": 41

 }

 }

 }

 },

 {

 "type": "eventlogs",

 "id": "78263",

 "attributes": {

 "eventtime": "2020-11-03T16:27:14.147",

 "quantity": 1,

 "data": "1"

 },

 "relationships": {

 "action": {

 "data": {

 "type": "logactions",

 "id": 6144

 }

 },

 "tool": {

 "data": {

 "type": "tools",

 "id": 100004

 }

 },

 "locationsource": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "locationdest": {

 "data": {

 "type": "locations",

 "id": 35

 }

 },

 "parentsourcelocation": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "parentdest": {

 "data": {

 "type": "locations",

 "id": 21

 }

 },

 "employee": {

 "data": {

 "type": "employees",

 "id": 4

 }

 },

 "affectedemployee": {

 "data": {

 "type": "employees",

 "id": 4

 }

 },

 "device": {

 "data": {

 "type": "devices",

 "id": 41

 }

 }

 }

 }

],

 "links": {

 "first": "http://localhost:59011/api/Eventlogs?limit=2&actions=6144%2c+6145&startid=1&endid=500000&offset=

 "next": "http://localhost:59011/api/Eventlogs?limit=2&actions=6144%2c+6145&startid=1&endid=500000&offset=2

 "last": "http://localhost:59011/api/Eventlogs?limit=2&actions=6144%2c+6145&startid=1&endid=500000&offset=5

 },

 "meta": {

 "offset": 0,

 "limit": 2,

 "count": 512

 }

}

Notice that most of the data is relationships. To make it easier to get the data from those relationships, the user
can add includes. This tells the API to go ahead and get that information and add it to the data returned. For
this example, we will add includes for the tool and the employee responsible for the tool. Here is the request
with includes added.

GET /Eventlogs?limit=2&includes=employee%2C%20tool&actions=6144%2C%206145&startid=1&endid=500000 

Here is what that result would look like with the added include data.

{

 "data": [

 {

 "type": "eventlogs",

 "id": "18596",

 "attributes": {

 "eventtime": "2020-09-28T19:17:22.577",

 "quantity": 2,

 "data": "2"

 },

 "relationships": {

 "action": {

 "data": {

 "type": "logactions",

 "id": 6144

 }

 },

 "tool": {

 "data": {

 "type": "tools",

 "id": 100014

 }

 },

 "locationsource": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "locationdest": {

 "data": {

 "type": "locations",

 "id": 35

 }

 },



 "parentsourcelocation": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "parentdest": {

 "data": {

 "type": "locations",

 "id": 21

 }

 },

 "employee": {

 "data": {

 "type": "employees",

 "id": 4

 }

 },

 "affectedemployee": {

 "data": {

 "type": "employees",

 "id": 4

 }

 },

 "device": {

 "data": {

 "type": "devices",

 "id": 41

 }

 }

 }

 },

 {

 "type": "eventlogs",

 "id": "78263",

 "attributes": {

 "eventtime": "2020-11-03T16:27:14.147",

 "quantity": 1,

 "data": "1"

 },

 "relationships": {

 "action": {

 "data": {

 "type": "logactions",

 "id": 6144

 }

 },

 "tool": {

 "data": {

 "type": "tools",

 "id": 100004

 }

 },

 "locationsource": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "locationdest": {

 "data": {

 "type": "locations",

 "id": 35

 }

 },

 "parentsourcelocation": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "parentdest": {

 "data": {

 "type": "locations",

 "id": 21

 }

 },

 "employee": {

 "data": {

 "type": "employees",

 "id": 4

 }

 },

 "affectedemployee": {

 "data": {

 "type": "employees",

 "id": 4

 }

 },

 "device": {

 "data": {

 "type": "devices",

 "id": 41

 }

 }

 }

 }

],

 "included": [

 {

 "type": "employees",

 "id": "4",

 "attributes": {

 "displayname": "Mechanic, Dave",

 "imageupdated": "2022-08-29T15:31:43",

 "deactivated": false,

 "lastname": "Mechanic",

 "firstname": "Dave",

 "middleinitial": "",

 "title": "",

 "customerid": "dvm",

 "username": "dvm",

 "email": "dvm123@gmail.com",

 "cellphone": "5018675309",

 "carrier": 2,

 "badge": "9BBB4B"

 },

 "relationships": {

 "homelocation": {

 "data": {

 "type": "locations",

 "id": 1

 }

 },

 "language": {

 "data": {

 "type": "languages",

 "id": 0

 }

 },

 "temporarybadge": {

 "data": {

 "type": "temporarybadges",

 "id": 4

 }

 },

 "profiles": {

 "data": [

 {

 "type": "locations",

 "id": 1,

 "relationships": {

 "profile": {

 "data": {

 "type": "profiles",

 "id": 1

 }

 }

 }

 },

 {

 "type": "locations",

 "id": 47,

 "relationships": {

 "profile": {

 "data": {

 "type": "profiles",

 "id": 34

 }

 }

 }

 }

]

 }

 }

 },

 {

 "type": "tools",

 "id": "100004",

 "attributes": {

 "deactivated": false,

 "customerid": "Torque!",

 "quantity": 1

 },

 "relationships": {

 "mastertool": {

 "data": {

 "type": "mastertools",

 "id": 100014

 }

 },

 "defaulttool": {

 "data": {

 "type": "defaulttools",

 "id": 100014

 }

 },

 "homelocation": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "devicelocation": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "parenttool": {

 "data": {

 "type": "toolparentchild",

 "id": 100004,

 "relationships": {

 "parenttool": {

 "data": {

 "type": "tools",

 "id": 100115

 }

 },

 "childtool": {

 "data": {

 "type": "tools",

 "id": 100004

 }

 },

 "locationgeneric": {

 "data": {

 "type": "locationgenerics",

 "id": 5

 }

 }

 }

 }

 },

 "issuedtool": {

 "data": {

 "type": "issuedtools",

 "id": 100004

 }

 },

 "toolstatus": {

 "data": {

 "type": "toolstatuses",

 "id": 100004

 }

 },

 "toolmaintenances": {

 "data": {

 "type": "toolmaintenancesfortool",

 "id": 100004

 }

 }

 }

 },

 {

 "type": "tools",

 "id": "100014",

 "attributes": {

 "deactivated": false,

 "quantity": 8,

 "tag": "100014"

 },

 "relationships": {

 "mastertool": {

 "data": {

 "type": "mastertools",

 "id": 100024

 }

 },

 "defaulttool": {

 "data": {

 "type": "defaulttools",

 "id": 100024

 }

 },

 "homelocation": {

 "data": {

 "type": "locations",

 "id": 41

 }

 },

 "devicelocation": {

 "data": {

 "type": "locations",

 "id": 41

 }

 }

 }

 }

Getting Eventlogs for a Specific Device

],

 "links": {

 "first": "http://localhost:59011/api/Eventlogs?limit=2&includes=employee%2c+tool&actions=6144%2c+6145&star

 "next": "http://localhost:59011/api/Eventlogs?limit=2&includes=employee%2c+tool&actions=6144%2c+6145&start

 "last": "http://localhost:59011/api/Eventlogs?limit=2&includes=employee%2c+tool&actions=6144%2c+6145&start

 },

 "meta": {

 "offset": 0,

 "limit": 2,

 "count": 512

 }

}

This call could be customized as desired and further information can be gathered by additional calls for other
relationship data as needed.

You can get the eventlogs for a specific device in the system easily by adding a location ID filter to your request.
Every device in the system is a location and has an associated location ID. To get the location ID for the device
in which you are interested, you would get the list of locations in the system and look at the location data for
the specific device. Here is what that request would look like.

GET /Locations 

And here is an example of what the result might look like for one of the locations in the response.

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=getting-eventlogs-for-a-specific-device

 },
 {
 "type": "locations",
 "id": "3", <=============== LOCATION ID
 "attributes": {
 "deactivated": false,
 "customerid": "Avionics Box 23",
 "name": "Avionics Box 23"
 },
 "relationships": {
 "locationtype": {
 "data": {
 "type": "locationtypes",
 "id": 3
 }
 },
 "parent": {
 "data": {
 "type": "locations",
 "id": 1
 }
 },
 "device": {
 "data": {
 "type": "devices",
 "id": 3
 }
 }
 }
 },



You would look at the name or customerid to determine which location ID should be used for the filter. For
example, the location ID for the Avionics Box 23 is 3. Now that you have the location ID of interest you can add
the location ID filter to your eventlog request.

The result will be a list of eventlogs filtered by the location ID. Keep in mind that there are multiple location
relationships in an eventlog. There are source and destination location, source and destination parent location,
and parent group. Depending on the type of eventlog of interest, these may or may not be relevant. For this
example, we will have eventlogs for the specified device.

Here is what that request would look like.

GET /Eventlogs?locationId=3 

And here is a partial example of the response. All the eventlogs have a locationsource of 3.

{
 "data": [
 {
 "type": "eventlogs",
 "id": "1678",
 "attributes": {
 "eventtime": "2022-05-10T19:56:24.903",
 "data": "Z91FF876"
 },
 "relationships": {
 "action": {
 "data": {
 "type": "logactions",
 "id": 2069
 }
 },
 "locationsource": {
 "data": {
 "type": "locations",
 "id": 3
 }
 },
 "parentsourcelocation": {
 "data": {
 "type": "locations",
 "id": 1
 }
 },
 "employee": {
 "data": {
 "type": "employees",
 "id": 3
 }
 }
 }
 },
 {
 "type": "eventlogs",
 "id": "1679",
 "attributes": {
 "eventtime": "2022-05-10T19:56:24.903",
 "data": " -> 9.3.5.0"
 },
 "relationships": {
 "action": {
 "data": {
 "type": "logactions",
 "id": 36889
 }
 },
 "locationsource": {
 "data": {
 "type": "locations",
 "id": 3
 }
 },
 "parentsourcelocation": {
 "data": {
 "type": "locations",
 "id": 1
 }
 }
 }
 },

 {
 "type": "eventlogs",



Getting a Current List of Issued Tools

 "id": "3221",
 "attributes": {
 "eventtime": "2022-05-10T18:58:10.463"
 },
 "relationships": {
 "action": {
 "data": {
 "type": "logactions",
 "id": 8258
 }
 },
 "tool": {
 "data": {
 "type": "tools",
 "id": 100806
 }
 },
 "locationsource": {
 "data": {
 "type": "locations",
 "id": 3
 }
 },
 "parentsourcelocation": {
 "data": {
 "type": "locations",
 "id": 1
 }
 },
 "employee": {
 "data": {
 "type": "employees",
 "id": 3
 }
 },
 "dataidwas": {
 "data": {
 "type": "mastertools",
 "id": 0
 }
 },
 "dataidis": {
 "data": {
 "type": "mastertools",
 "id": 100068
 }
 }
 }
 }
],
 "links": {
 "first": "https://l5connectapi.com:59011/api/Eventlogs?locationId=3&offset=0&limit=50",
 "next": "https://l5connectapi.com:59011/api/Eventlogs?locationId=3&offset=50&limit=50",
 "last": "https://l5connectapi.com:59011/api/Eventlogs?locationId=3&offset=600&limit=50"
 },
 "meta": {
 "offset": 0,
 "limit": 50,
 "count": 615
 }
}

Let's say you wanted a way to get a list of the issued tools in the system and their related data other than
monitoring tools issued from the event logs. The tools controller get method will allow you to get the

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=getting-a-current-list-of-issued-tools

information you need with the proper filtering. Setting the isIssued filter to true will give you a list of all the
tools issued in the system. Adding "issuedtool" to the includes filter of the request will also include a list of the
issued tool relationship data for each of the issued tools in the Included part of the response.

The included issued tools information will contain IDs for related objects. For example, information about an
employee ID can be obtained from the Employees controller to create a static cross-reference table when
interfacing with other systems.

Here is what the get request with "isIssued = true" and "included = issuedtool" would look like.

GET /Tools?includes=issuedtool&isIssued=true 

And here is an example of the response.

{
 "data": [
 {
 "type": "tools",
 "id": "100004",
 "attributes": {
 "deactivated": false,
 "customerid": "Torque!",
 "quantity": 1
 },
 "relationships": {
 "mastertool": {
 "data": {
 "type": "mastertools",
 "id": 100014
 }
 },
 "defaulttool": {
 "data": {
 "type": "defaulttools",
 "id": 100014
 }
 },
 "homelocation": {
 "data": {
 "type": "locations",
 "id": 41
 }
 },
 "devicelocation": {
 "data": {
 "type": "locations",
 "id": 41
 }
 },
 "parenttool": {
 "data": {
 "type": "toolparentchild",
 "id": 100004,
 "relationships": {
 "parenttool": {
 "data": {
 "type": "tools",
 "id": 100115
 }
 },
 "childtool": {
 "data": {
 "type": "tools",
 "id": 100004
 }
 },
 "locationgeneric": {
 "data": {
 "type": "locationgenerics",
 "id": 5
 }
 }
 }
 }
 },
 "issuedtool": {
 "data": {
 "type": "issuedtools",
 "id": 100004
 }
 },
 "toolstatus": {
 "data": {



 "type": "toolstatuses",
 "id": 100004
 }
 },
 "toolmaintenances": {
 "data": {
 "type": "toolmaintenancesfortool",
 "id": 100004
 }
 }
 }
 },
 {
 "type": "tools",
 "id": "100021",
 "attributes": {
 "deactivated": false,
 "quantity": 1
 },
 "relationships": {
 "mastertool": {
 "data": {
 "type": "mastertools",
 "id": 100028
 }
 },
 "defaulttool": {
 "data": {
 "type": "defaulttools",
 "id": 100028
 }
 },
 "homelocation": {
 "data": {
 "type": "locations",
 "id": 41
 }
 },
 "devicelocation": {
 "data": {
 "type": "locations",
 "id": 41
 }
 },
 "issuedtool": {
 "data": {
 "type": "issuedtools",
 "id": 100021
 }
 },
 "toolstatus": {
 "data": {
 "type": "toolstatuses",
 "id": 100021
 }
 }
 }
 },
 list of tools continues...
],
 "included": [
 {
 "type": "issuedtools",
 "id": "100004",
 "attributes": {},
 "relationships": {
 "instances": {
 "data": [
 {
 "type": "issuedtoolInstance",

Getting Issued Tools with Cross Referenced Employees

Create Cross-Reference Table

 "id": "100004",
 "attributes": {
 "issuetime": "2021-10-21T21:23:05.803",
 "intransit": false,
 "quantity": 1
 },
 "relationships": {
 "tool": {
 "data": {
 "type": "tools",
 "id": 100004
 }
 },
 "issuebehavior": {
 "data": {
 "type": "issuebehaviors",
 "id": 0
 }
 },
 "employee": {
 "data": {
 "type": "employees",
 "id": 5 <---- HERE IS THE EMPLOYEE ID
 }
 },
 "location": {
 "data": {
 "type": "locations",
 "id": 35
 }
 }
 }
 }
]
 }
 }
 },
 issued tool include data continues...
],
 "links": {
 "first": "http://localhost:59011/api/Tools?includes=issuedtool&isIssued=true&offset=0&limit=50",
 "next": "http://localhost:59011/api/Tools?includes=issuedtool&isIssued=true&offset=50&limit=50",
 "last": "http://localhost:59011/api/Tools?includes=issuedtool&isIssued=true&offset=100&limit=50"
 },
 "meta": {
 "offset": 0,
 "limit": 50,
 "count": 131
 }
}

As of software release 9.8.4.1116, the L5 Connect API can pull a filtered list of issue tools that include the issued
to employee identifying information. This identifying information can be used in a table that will “cross
reference” employees in the L5 Connect system to employees in other systems.

This can be done once and refreshed when new employees are added. The table that is created is used in the
“Normal Operation” process.

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=getting-issued-tools-with-cross-referenced-employees
https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=create-cross-reference-table

L5 Connect Employee IDs from API Employees Controller

Join Identifying Information

Employee IDs from Other Systems

Cross-Reference Table

Normal Operation

Employee IDs Other System IDsGet Tools that are issued with employee info L5 Connect API Cross-Reference Table Other System

Managing Tool Maintenances

The Issued Tool – Employee ID information can be pulled from the L5 Connect API on-demand. The cross-
reference table that was previously created will be used to convert the L5 Connect Employee ID to the required
identifier for other system(s). The attached document (Getting Current List of Issued Tools) provides detailed
instructions for making the proper API request and interpreting the returned data to accomplish the data flow
shown below.

NOTE: Additional details about the GET request and the returned data can the found in the Getting
Current List of Issued Tools of the L5 Connect API Introduction document.

This example will show how you could use the API to manage your tool maintenances. Tools in the L5 Connect™
system have a master tool that defines the attributes that apply to all instances of that tool type (part number,
description, etc.) and instances of that master tool which contain the attributes specific to that instance of a tool
(tag, serial number, etc.). A master maintenance defines a type of maintenance that could be assigned to a
master tool. The master maintenance defines the parts of a maintenance type that are common to all tool
instances such as the maintenance period, the number of days before expiration where the system will display a
warning, and the initial maintenance period when a tool instance is assigned a maintenance. A tool
maintenance defines the attributes of the tool maintenance which are specific to that tool instance such as
when the tool last received maintenance.

The L5 Connect™ system alerts users that a tool is about to need maintenance or is past due for maintenance
by setting a status on that tool. The application of these statuses to the tool are recorded as eventlogs in the
eventlog history. By monitoring the eventlogs for the Status Set action you can see that a status has been set
on a tool. By using the log actions controller as described earlier in the document, you can get the status set
action ID of 8204. The dataidis field, (data ID is) contains the status ID that was set for the tool. The status ID
definitions can be found by using the GET on the StatusType controller. You can see that the ApiStatusStype
class has the name as a relationship to a custom text field so we will want to include "name" in the includes filter
for the request, which will look like this.

GET StatusType?includes=name 

This will return a list of all the potential statuses that could be set in the system, with a list of custom text values
for the names at the end. Scanning through the list you will see that the maintenance overdue status ID is 9 and
the maintenance pending ID is 10.

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=normal-operation
https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=managing-tool-maintenances

{
 "data": [
 { {
 "type": "statustypes",
 "id": "9",
 "attributes": {
 "usercustomizable": false,
 "background": "#FF0000",
 "generatewarning": true,
 "generatealert": true,
 "managedoutofbox": false,
 "toolboxtool": true,
 "toolbox": true,
 "rfidlockertool": true,
 "rfidlocker": true,
 "toolcribtool": true,
 "toolcrib": true,
 "kiosktool": true,
 "kiosk": true,
 "portaltool": true,
 "portal": true,
 "kiosktooldropoff": false
 },
 "relationships": {
 "name": {
 "data": {
 "type": "customtext",
 "id": 20
 }
 },
 "abbrev": {
 "data": {
 "type": "customtext",
 "id": 21
 }
 }
 }
 },
 {
 "type": "statustypes",
 "id": "10",
 "attributes": {
 "usercustomizable": false,
 "background": "#FFA500",
 "generatewarning": true,
 "generatealert": false,
 "managedoutofbox": false,
 "toolboxtool": true,
 "toolbox": true,
 "rfidlockertool": true,
 "rfidlocker": true,
 "toolcribtool": true,
 "toolcrib": true,
 "kiosktool": true,
 "kiosk": true,
 "portaltool": true,
 "portal": true,
 "kiosktooldropoff": false
 },

],
 "included": [
 {
 "type": "customtext",
 "id": "20",
 "attributes": {
 "en": "Maintenance Overdue",
 "it": "Manutenzione in ritardo",
 "fr": "Retard maintenance",



 "es": "Mantenimiento atrasado",
 "de": "Wartung überfällig",
 "pt": "Manutenção vencida",
 "zh": "维护期限已过",
 "ko": "유지 보수 기간이 지났습니다.",
 "ja": "メンテナンス期限切れ",
 "localized": true
 }
 },
 {
 "type": "customtext",
 "id": "22",
 "attributes": {
 "en": "Maintenance Pending",
 "it": "In attesa di manutenzione",
 "fr": "Maintenance en attente",
 "es": "Pendiente de mantenimiento",
 "de": "Wartung ausständig",
 "pt": "Manutenção pendente",
 "zh": "维护期限待审批",
 "ko": "유지 보수 승인중",
 "ja": "メンテナンス 未確定",
 "localized": true
 }
 },

If you wanted to monitor for tools that had a pending maintenance due, you would poll the eventlogs filtering
for an action of 8204, which is the status set action. You would then look at the dataidis relationship for an ID of
10, which has a name relationship ID of 22, which is maintenance pending. So, your request would look like this.

GET /Eventlogs?actions=8204 

And an example response of...

{
 "data": [
 {
 "type": "eventlogs",
 "id": "881521",
 "attributes": {
 "eventtime": "2024-04-24T20:44:34.747",
 "drawer": 8
 },
 "relationships": {
 "action": {
 "data": {
 "type": "logactions",
 "id": 8204
 }
 },
 "tool": {
 "data": {
 "type": "tools",
 "id": 225455
 }
 },
 "roi": {
 "data": {
 "type": "roi",
 "id": 100791
 }
 },
 "locationsource": {
 "data": {
 "type": "locations",
 "id": 47
 }
 },
 "parentsourcelocation": {
 "data": {
 "type": "locations",
 "id": 1
 }
 },
 "device": {
 "data": {
 "type": "devices",
 "id": 47
 }
 },
 "dataidis": {
 "data": {
 "type": "statustypes",
 "id": 9
 }
 }
 }
 },
 {
 "type": "eventlogs",
 "id": "881526",
 "attributes": {
 "eventtime": "2024-04-24T20:46:49.403",
 "drawer": 8
 },
 "relationships": {
 "action": {
 "data": {
 "type": "logactions",
 "id": 8204
 }
 },
 "tool": {



 "data": {
 "type": "tools",
 "id": 225455
 }
 },
 "roi": {
 "data": {
 "type": "roi",
 "id": 100791
 }
 },
 "locationsource": {
 "data": {
 "type": "locations",
 "id": 47
 }
 },
 "parentsourcelocation": {
 "data": {
 "type": "locations",
 "id": 1
 }
 },
 "device": {
 "data": {
 "type": "devices",
 "id": 47
 }
 },
 "dataidis": {
 "data": {
 "type": "statustypes",
 "id": 10 <=========== Here is our maintenance pending status ID
 }
 }
 }
 },
 {
 "type": "eventlogs",
 "id": "881527",
 "attributes": {
 "eventtime": "2024-04-24T21:04:33.477"
 },
 "relationships": {
 "action": {
 "data": {
 "type": "logactions",
 "id": 8204
 }
 },
 "tool": {
 "data": {
 "type": "tools",
 "id": 102458
 }
 },
 "locationsource": {
 "data": {
 "type": "locations",
 "id": 47
 }
 },
 "parentsourcelocation": {
 "data": {
 "type": "locations",
 "id": 1
 }
 },
 "device": {
 "data": {

 "type": "devices",
 "id": 47
 }
 },
 "dataidis": {
 "data": {
 "type": "statustypes",
 "id": 17
 }
 }
 }
 },
 {
 "type": "eventlogs",
 "id": "881531",
 "attributes": {
 "eventtime": "2024-04-25T16:11:09.15"
 },
 "relationships": {
 "action": {
 "data": {
 "type": "logactions",
 "id": 8204
 }
 },
 "tool": {
 "data": {
 "type": "tools",
 "id": 102458
 }
 },
 "locationsource": {
 "data": {
 "type": "locations",
 "id": 47
 }
 },
 "parentsourcelocation": {
 "data": {
 "type": "locations",
 "id": 1
 }
 },
 "device": {
 "data": {
 "type": "devices",
 "id": 47
 }
 },
 "dataidis": {
 "data": {
 "type": "statustypes",
 "id": 18
 }
 }
 }
 }
],
 "links": {
 "first": "http://localhost:59011/api/Eventlogs?offset=0&actions=8204&limit=50",
 "last": "http://localhost:59011/api/Eventlogs?offset=7300&actions=8204&limit=50"
 },
 "meta": {
 "offset": 7310,
 "limit": 50,
 "count": 7320
 }
}

So, we have identified a tool that has an impending maintenance that is due. Let's say that the tool was sent off
to the calibration lab and has now been maintained and is ready to go back into service. And let's further
assume you want to update the last maintenance date for the tool in the L5 Connect™ system to clear the status
set against that tool. From the eventlog that told us there was a pending maintenance we can get the tool ID
from the tool relationship. We also need to know the master maintenance ID of the maintenance type we will be
updating, as a tool can have multiple maintenance types, and we need to update the correct one. You can use
the GET method of the ToolMaintenancesForTool controller to get the list of maintenances associated with the
tool.

GET /ToolMaintenancesForTool/225455 

{
 "data": {
 "type": "toolmaintenancesfortool",
 "id": "225455",
 "attributes": {},
 "relationships": {
 "instances": {
 "data": [
 {
 "type": "toolmaintenanceinstance",
 "id": "225455",
 "attributes": {
 "datelastmaintenance": "2024-04-21T00:00:00",
 "duedate": "2024-04-30T00:00:00"
 },
 "relationships": {
 "tool": {
 "data": {
 "type": "tools",
 "id": 225455
 }
 },
 "mastermaintenance": {
 "data": {
 "type": "mastermaintenances",
 "id": 19
 }
 }
 }
 }
]
 }
 }
 }
}



This tool only has one maintenance associated with it. You can use the GET method of the MasterMaintenance
controller with a specified ID to get the information about this maintenance.

GET /MasterMaintenance/19 

Try it out

{
 "data": {
 "type": "mastermaintenances",
 "id": "19",
 "attributes": {
 "overduedays": 30,
 "warningdays": 7
 },
 "relationships": {
 "mastertool": {
 "data": {
 "type": "mastertools",
 "id": 100123
 }
 },
 "maintenancetype": {
 "data": {
 "type": "maintenancetypes",
 "id": 1
 }
 },
 "toolmaintenances": {
 "data": {
 "type": "toolmaintenancesformastermaintance",
 "id": 19
 }
 }
 }
 }
}



You can see that this defines the type of master tool, and the type of maintenance associated with this tool
maintenance as well as the overdue days and warning days applied to any instances of this tool maintenance.
You could use the MaintenanceTypes controller to get the type of maintenance this is. In this case it is the built-
in calibration type.

To update the datelastmaintenance and duedate attributes, your patch would look like this.

PATCH /ToolMaintenancesForTool/225455/19

{
 "data": {
 "type": "toolmaintenanceinstance",
 "id": "225455",
 "attributes": {
 "datelastmaintenance": "2024-04-25T00:00:00",
 "duedate": "2024-05-25T00:00:00"
 }
 }
}



Upon issuing this update through the API the maintenance pending status is cleared in both the admin
application and on the toolbox.

Below is a link to a cloud implementation of the API that defines all of the controllers and methods available.
You can actually send sample commands to a demo version of the API and see the results.

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=try-it-out

L5 Connect API

You will need a token to allow you to authenticate your browser session. To obtain a token, contact the Pro
Services Team (INDPROSERVICES@snapon.com) and request a token for the L5ConnectApi.com website.

Once you have received your token, click the Authorize button.

Now paste your token into the Value text box.

Then click the Authorize button and then the Close button. You are now ready to select a controller method
and try it out.

Let's say you wanted a way to get a list of the currently issued tools in the system. The tools controller get
method will allow you to get the information you need with the proper filtering. Scroll down to the tools
controller.

https://l5connectapi.com/api/
mailto:INDPROSERVICES@snapon.com
http://l5connectapi.com/

Then click on the Get /api/Tools button to expand this get method.

Now click the Try it out button to enable the try it out feature.

Setting the isIssued filter to true will give you a list of all the tools issued in the system. Then click the Execute
button to try it out.

Your response should look something like this.

This shows the list of currently issued tools in the system including any attributes the tool has and any
relationships it has to other data structures in the system such as its mastertools instance or its issuedtools
instance. Since we are interested in this information it would be nice to get this in this query without having to
go to the controllers for those data types and requesting it in separate queries. If we look at the description of
the tools controller we can see that it supports extended filtering relationships for both data types.

Adding issuedtool, mastertool to the includes filter of the request will also include a list of the issued tool
relationship data and master tool relationship data for each of the issued tools in the Included part of the
response.

After adding these extended filters click the Execute button again.

Conclusion

If you look at the result again it will be the same list of issued Tools objects, but if you keep scrolling down to
the bottom part of the response you will see an included section. This section will have a list of all the issued
tool data objects associated with the currently issued tools.

It will also have a list of all the master tool data objects associated with the list of issued tools.

Here is a link of a video of the process.
Trying out the L5 Connect API

The L5 Connect API is designed to provide customers with access to the data they need. Snap-on is committed
to working with customers as they develop their interface to the L5 Connect API by helping them understand
how to use the API and helping them understand where the data they need is in the L5 system.

https://dev.azure.com/IndustrialToolControl/Tool%20Control/_wiki/wikis/Tool-Control.wiki/141/L5-Connect-API-Introduction?anchor=conclusion
https://l5connectapi.com/api/L5ConnectTryItOut.mp4

